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Abstract

To clarify the scaling law of fine scale eddies in turbulent channel flows, direct numerical simulations are conducted for

Res ¼ 180, 400 and 800. The diameter and the maximum azimuthal velocity of coherent fine scale eddies can be scaled by Kol-

mogorov microscale (g) and Kolmogorov velocity (uk). The most expected diameter and maximum azimuthal velocity are 8–10g and
1.2–2.0uk , respectively. Near the wall, the most expected diameter increases to 10g from 8g and the most expected maximum azi-

muthal velocity increases to 2.0uk from 1.2uk. Strain rates at the center of the coherent fine scale eddies are small compared with the

mean strain rate of the whole flow field. The strain rates acting on the fine scale eddies away from the wall coincide with those in

homogeneous isotropic turbulence and turbulent mixing layer. However, relatively large strain rates are acting on the near-wall

coherent fine scale eddies. The most expected angle between the intermediate eigenvector and the rotating axis of the fine scale eddy

is about 15–17�, which is independent of the turbulent flow fields. The probability that coherent fine scale eddies exist in low-speed

streaks is higher than that in high-speed streaks. Large scale structures of wall turbulence are visualized by showing spatial dis-

tributions of central axes of coherent fine scale eddies.
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1. Introduction

Theoretical description of intermittent character in

small scale motion has been one of the most important

subjects in turbulence research. Theorists have made

efforts to establish theories of fine scale structure of

turbulence by assuming various types of vortices as fine
scale structure (Corrsin, 1962; Lundgren, 1982; Pullin

and Saffiman, 1993; Tennekes, 1968; Townsend, 1951).

Most of them are based on an assumption that many

tube-like vortices are embedded in turbulence randomly.

Owing to direct numerical simulations (DNS) of tur-

bulence, it has been found that turbulence is composed

of universal fine scale eddies, which are verified in

homogeneous isotropic turbulence (Jimenez et al., 1993;
Tanahashi et al., 1999a), turbulent mixing layer
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(Tanahashi et al., 2001) and turbulent channel flow

(Tanahashi et al., 1999c). In turbulent mixing layers,

large scale structures which were found by Brown and

Roshko (1974) are composed of many coherent fine

scale eddies (Tanahashi et al., 2001). In turbulent

channel flows, well-known streamwise vortices possess

the same feature as the coherent fine scale eddies
(Tanahashi et al., 1999b,c). The characteristics of these

eddies in low Reynolds number flows can be scaled by

the Kolmogorov microscale (g) and rms of velocity

fluctuation (urms), and the most expected diameter and

maximum azimuthal velocity are about 8g and 0.5–

1.0urms, respectively. Recent study in homogeneous

isotropic turbulence up to Rek � 220 has revealed the

exact scaling of these coherent fine scale eddies (Mi-
yauchi et al., 2002). The diameter and the maximum

azimuthal velocity are scaled by g and the Kolmogorov

velocity (uk), respectively. Similar to the results obtained

in low Rek cases (Jimenez et al., 1993; Tanahashi et al.,

1999a), the most expected diameter is 8g even for highest

Rek. On the other hand, the most expected value of the
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Table 1

Numerical parameters for DNS of turbulent channel flows

Res Re Lx � Ly � Lz Nx � Ny � Nz Dþ
x Dþ

y Dþ
z

180 3276 4pd� 2d� 2pd 192· 193· 160 11.781 0.433–4.664 7.069

400 8200 2pd� 2d� pd 256· 385· 192 9.817 0.479–5.183 6.544

800 17,760 2pd� 2d� pd 512· 769· 384 9.817 0.479–5.183 6.544
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Fig. 1. Mean velocity profiles for Res ¼ 180, 400 and 800.
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maximum azimuthal velocity can be scaled by uk instead
of urms and is 1:2uk for all Rek. It should be noted that

the azimuthal velocity of intense fine scale eddies of

which diameter is about 8g remains to be scaled by urms

and reaches to 3–4urms even at high Rek.
From previous studies for homogeneous isotropic

turbulence and turbulent mixing layer, it has been re-

ported that the most expected eigenvalue ratio of strain
rate is )5:1:4 at the centers of coherent fine scale eddies,

and the eigenvector of the minimum eigenvalue tends to

be perpendicular to the rotating axis of the coherent fine

scale eddy and the angle between the rotating axis and

the eigenvector of intermediate eigenvalue is less than

45� for about 70% of the fine scale eddy (Miyauchi et al.,

2002; Tanahashi et al., 2001). Blackburn et al. (1996)

have reported that the eigenvector of the intermediate
eigenvalue shows a tendency to be parallel to the vor-

ticity vector in the near-wall region of turbulent channel

flow with Res ¼ 395. Tanahashi et al. (1999c) have

investigated the alignment and the ratio of the eigen-

values at the center of coherent fine scale eddy for low

Reynolds number cases.

Over the past few decades, a number of studies have

been conducted on relation between a low-speed streak
and the structure of wall turbulence. The average length

of a low-speed streak associated with a hairpin vortex is

about two to three hundred wall units in low-Reynolds

number channel flow (Kim, 1983). The most widely

observed coherent structures in the wall layer are

streaks: elongated regions of high- and low-speed fluid

alternating in the spanwise direction (Choi et al., 1994).

The generation of the quasi-streamwise vortices is
associated with changes in the shape of a low-speed

streak surface (Soldati, 2000). However, there are few

studies about quantitative relations between low-speed

streaks and fine scale eddies. For identification of vor-

tical structures in turbulent flow, a considerable number

of investigations have been reported. For example, Ta-

naka and Kida (1993) have used r2p to represent

streamwise vortices in homogeneous shear flows. r2p
corresponds to twice the second invariant Q of the

velocity gradient tensor. Jeong et al. (1997) and Black-

burn et al. (1996) have used k2 definition and D defini-

tion to investigate vortical structure near the wall.

However, all of these identification methods depend on

the threshold value of the variables.

In this study, direct numerical simulations of turbu-

lent channel flows up to Res ¼ 800 are conducted. From
these DNS data, the scaling law of fine scale eddies near

the wall is investigated, and large and small scale

coherent structures of wall turbulence are visualized by

showing spatial distributions of the axes of coherent fine

scale eddies.
2. Turbulent statistics

In this study, direct numerical simulations of turbu-

lent channel flows up to Res ¼ 800, where Res is the

Reynolds number based on the friction velocity (us) and
the channel half width (d), were conducted by solving

incompressible Navier–Stokes equations and continuity

equation. The computational domain size (Lx; Ly ; Lz), the
number of grid points (Nx;Ny ;Nz) and spatial resolution
(Dþ

x ;D
þ
y ;D

þ
z ) are given in Table 1. Spectral methods are

used in the streamwise (x) and spanwise (z) directions,
and a fourth-order central finite difference scheme is

used in the transverse (y) direction. This DNS code has

been verified by comparing with the result of Kim et al.

(1987). Computations were carried out until the turbu-

lent flow field attains statistical steady state.

Fig. 1 shows the mean velocity profiles for Res ¼ 180,
400 and 800, where the wall-normal coordinate is given

in wall units and the mean velocity is normalized by the

friction velocity (us). The solid and dashed lines repre-

sent the linear and the log law, respectively. All curves in

yþ < 5 are independent of Res. The curves in yþ > 20

both for Res ¼ 400 and 800 coincide with the dashed

line, but the curve of Res ¼ 180 shifts upward from it.

Moreover, it should be noted that the wake region is
clearly distinguishable for Res ¼ 800. Root-mean-square

velocity fluctuations normalized by us are shown in Fig.

2. These peak values slightly increase with the increase
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Fig. 4. Iso-surfaces of the second invariant of the velocity gradient

tensor for Res ¼ 800 (Q ¼ 10, domain size: lþx � lþy � lþz ¼ 5026�
800� 2513): (a) top view, (b) side view.
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of Res. Especially, wall-normal and spanwise compo-

nents highly depend on Res and positions of the peak

values are slightly away from the wall as Res increases.
Fig. 3 shows the budget of the turbulent kinetic en-

ergy for all Reynolds numbers in wall coordinates. The

absolute values of the production and the dissipation

terms for Res ¼ 180 are smaller than the results for
Res ¼ 400 and 800, but the ratio of these terms is inde-

pendent of Res as shown by Moser et al. (1999). We

could verify that the budget of the transport equation

for the Reynolds stress also shows the similar trend with

the budget of the turbulent kinetic energy and these

residuals are almost zero.
3. Fine scale eddies of high Reynolds number turbulent

channel flow

There are a lot of methods for identification of vor-

tical structures in turbulent flows. High vorticity or

enstrophy regions are the simplest method to visualize

the vortical structures. In previous works related to fine

scale structures in homogeneous isotropic turbulence,
high vorticity regions have been used to identify the

intermittent fine scale structure of turbulence (Jimenez
et al., 1993; She et al., 1990). However, high vorticity

regions may represent tube-like and sheet-like structures

simultaneously. For the case with a strong mean shear

like the flows near the wall or center of free shear flows,

employment of high vorticity or enstrophy regions fails
to represent coherent eddies. For visualization purposes,

iso-surfaces of the second invariant of the velocity gra-

dient tensor are shown for Res ¼ 800 in Fig. 4. The re-

gion visualized is the lower half of the calculation

domain. The second invariant of the velocity gradient

tensor is given by Qð¼ ðWijWij � SijSijÞ=2Þ, where

Sijð¼ ðoui=oxj þ ouj=oxiÞ=2Þ and Wijð¼ ðoui=oxj � ouj=
oxiÞ=2Þ are the symmetric and asymmetric parts of the
velocity gradient tensor Aijð¼ oui=oxj ¼ Sij þ WijÞ. Fig. 4
indicates that there are a lot of tube-like structures in

turbulent channel flow similar to homogeneous isotropic

turbulence and turbulent mixing layer. In turbulent

channel flow, streamwise vortices near the wall and

hairpin-like vortices (Zhou et al., 1999) can be visualized

by the positive Q region. Jeong et al. (1997) and

Blackburn et al. (1996) have used k2 definition and D
definition to investigate vortical structure near the wall.

However, all of the visualizations including Fig. 4 de-

pend on the threshold value of the variables. Therefore,

in this study, fine scale eddies are brought out without

any threshold by using a new identification scheme

based on local flow pattern which was used in our pre-

vious studies on homogeneous isotropic turbulence

(Tanahashi et al., 1999a). The identification scheme
consists of the following steps:

• Evaluation of Q at each collocation point from the re-

sults of DNS.

• Probability of existence of positive maxima of Q near

the collocation points is evaluated at each colloca-

tion point from the Q distribution. The case that a
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maximum of Q coincides with a collocation point is

very rare, so it is necessary to define probability on

collocation points.

• Collocation points with high possibility of existence
are selected to survey actual maxima of Q. Locations
of Q maxima are determined by applying a three

dimensional fourth-order Lagrange interpolation to

DNS data.

• At the maximum second invariant point, a horizontal

plane perpendicular to the vorticity vector is defined

and a cylindrical coordinate system with the maxi-

mum point as the origin is considered. The velocity
vectors are projected on this coordinate and mean

azimuthal velocity is calculated.

• A point that has minimum variance of azimuthal

velocity is surveyed near the maximum point. In this

process, cylindrical coordinate system is always re-

newed around a new searched point.

• Statistical properties are calculated around the

points.

From the distribution of Q, two-dimensional sections

of fine scale eddies are identified by using the new

identification scheme. The section brought out includes

a local maximum of Q along the axis of a fine scale eddy

and a central point of swirling motion is identified. The

radius of the coherent fine scale eddy can be identified

by the location of the maximum azimuthal velocity on
the plane perpendicular to the vorticity and passing

through the Qmax point, thereby negating the need of a

threshold.

Fig. 5 shows the probability density functions (pdf) of

the diameter and the maximum azimuthal velocity of the

fine scale eddies for Res ¼ 800. The diameter and the

maximum azimuthal velocity are normalized by g and

uk, which are calculated from mean energy dissipation
rate at yþ, where the eddy exists. Both pdfs do not de-
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muthal velocity are about 10g and 2:0uk, respectively.
Leaving from the wall, the most expected diameter and

maximum azimuthal velocity become about 8g and

1:2uk, which coincide with those in homogeneous iso-

tropic turbulence (Miyauchi et al., 2002). The fine scale

eddies near the wall are slightly wider and stronger than

those in homogeneous isotropic turbulence.

In addition to the diameter and the maximum azi-

muthal velocity, the spatial distribution of the axes also
shows characteristic feature near the wall. Fig. 6 shows

the inclination angles and the tilting angles of the

coherent fine scale eddies for Res ¼ 800. The inclination

angle (/y) and the tilting angle (/z) are defined on the

right side of Fig. 6 using the same convention as Jeong et

al. (1997). These two angles show strong directional

dependence with the decrease of yþ. These features

correspond to hairpin-like eddies and streamwise vor-
tices observed near the wall (Adrian et al., 2000;

Tanahashi et al., 1999b,c). Fig. 6(a) indicates a

strong concentration at /y � 30–50� near the wall

(10 < yþ < 200). The PIV measurements of Adrian et al.

(2000) show that x–y plane (yþ < 50–100) patterns of

ejection near the wall are consistent with the vortex legs

bending and becoming quasi-streamwise vortices, and

the inclination angles of the neck and head vary from
15� to 75� (45� is typical). The tilting angle of /z � 90�
indicates that the centers of the coherent fine scale eddies

are distributed in the head of hairpin type vortices (cane

vortex, arch vortex, hairpin vortex etc). Note that the

directional dependence of the axis is stronger in /y than

in /z. This result indicates that a large number of the

coherent fine scale eddies are distributed in the neck and

legs of hairpin type vortices rather than in the head of
those. Fig. 6 suggests that directional dependence of the
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Fig. 6. The inclination angle (a) and the tilting angle (b) of the coherent fine scale eddies (Res ¼ 800).
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axis can be observed even for yþ � 600. The variance of

the diameters becomes relatively small near the wall as

shown in Fig. 5(a), and the diameter of almost all

coherent fine scale eddies near the wall is about 10g.
Therefore, the anisotropy near the wall can be attributed

to the smallest coherent fine scale eddies. These results

suggest that the anisotropic feature in near-wall turbu-

lence is significantly different from that in free-shear

turbulence (Tanahashi et al., 2001) from the viewpoint

of the fine scale structure.
Fig. 7. Definition of angles between a rotating axis and eigenvectors of

strain rate tensor.
4. Coherent fine scale eddies and strain rate field

Strain rate acting on the coherent fine scale eddies is

investigated by evaluating the strain rate tensor Sij at the
center of the coherent fine scale eddies. The definitions

of eigenvalues and eigenvectors of Sij are given by
S ¼ R
a 0 0

0 b 0

0 0 c

0
@

1
ART; R ¼ ðea; eb; ecÞ; ð1Þ
where a, b and c are the minimum, intermediate and

maximum eigenvalues, respectively. The unit eigenvec-

tors corresponding to a, b and c are represented by ea, eb
and ec. Due to the assumption of incompressibility,

relation aþ bþ c ¼ 0 (a6 06b, a6 b6 c) holds. Fig. 7
shows the definition of angles between vorticity vector

and eigenvectors at the center of a coherent fine scale

eddy. Here x denotes the vorticity vector at the center of

a coherent fine scale eddy, and h, w, and / are defined by

the angles between x and three unit eigenvectors ea, eb
and ec.

Fig. 8(a) shows pdfs of the eigenvalues calculated in

the whole flow field. The eigenvalues are normalized by
g and uk. Near the wall, the pdf of intermediate eigen-

value indicates a sharp peak at about zero, but it skews

into the positive portion and the most expected value

becomes about 0.06uk=g far from the wall. The most

expected minimum eigenvalue increases with the in-

crease of distance from the wall, while the most expected

maximum eigenvalue decreases. Fig. 8(b) shows pdfs of

the eigenvalues evaluated at centers of the coherent fine
scale eddies. The eigenvalues in Fig. 8(b) are also nor-

malized by uk=g as in Fig. 8(a). Pdfs of the eigenvalues

near the wall are different from those at the channel

center. Near the wall, pdfs of a, b and c show peaks at

about )0.32, 0.04 and 0.27 uk=g, respectively. At the

center of channel, these peak values are )0.25, 0.04 and

0.2 uk=g, respectively, which coincide with those of

homogeneous isotropic turbulence and turbulent mixing
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layer. Pdfs of the eigenvalues of strain rate acting on the

center of coherent fine scale eddies show a very good
agreement with those obtained from the whole flow field

except for the near-wall region, but the absolute values

of the most expected eigenvalues are smaller than those

obtained from the whole flow field. In other words, these

results suggest that strain rate acting on the center of

coherent fine scale eddies is smaller than that in the

mean shear field, which is consistent with the fact that

the center of the coherent fine scale eddy is the Qmax

point.

To investigate the ratio of eigenvalues at centers of

the coherent fine scale eddies, an eigenvalue ratio r is

introduced by r ¼ ðc� bÞ=ðcþ bÞ ð06r6 3Þ. Fig. 9
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shows the pdf of the eigenvalue ratio for Res ¼ 800. The

peak of pdf increases from about 0.5–0.6 to 0.7 as yþ

decreases. The most expected eigenvalue ratio corre-

sponding to r ¼ 0:5–0.6 is a:b:c ¼ �5:1:4 to �)4:1:3
from the incompressible constraint. This eigenvalue ra-

tio coincides with that in homogeneous isotropic tur-

bulence and turbulent mixing layer (Tanahashi et al.,

2001). Since the eigenvalue ratio shows a peak at r ¼ 0:7
near the wall, the most expected eigenvalue ratio be-

comes a:b:c ¼ �7:1:6. Note that the large compression
and stretching are acting on the coherent fine scale ed-

dies in the near-wall region.

Fig. 10(a) shows pdfs of the angles between the local

vorticity vectors and the unit eigenvectors of strain rate

in the whole flow field. Near the wall, probabilities of h,
w and / show peaks at h ¼ 90�, w ¼ 0� and / ¼ 90�,
respectively. Far from the wall, pdfs of w show peak at

about 25�, but those of h and / still peak at about 90�.
Pdfs of the angles between the unit eigenvectors and the

axes of coherent fine scale eddies are plotted in Fig.

10(b). Pdfs of h and / show similar trends with those in

Fig. 10(a) except for the region near the wall. However,

at the center of the coherent fine scale eddies, proba-

bilities of peaks at about 90� are slightly higher than

those in the whole flow field. The probability of a peak

for h in the near-wall region is lower than that in the
channel center, and pdf of / shows a peak at 73–76�
near the wall. In the near-wall region, pdf of w sharply

increases from zero and gradually decreases after

showing peaks at 15–17�. Note that the pdfs peaks in

Fig. 10 are not sharp, especially far from the wall, and

spread over a small region.
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From these results, the alignment of a coherent fine

scale eddy with the principal strain rates is schematically

shown in Fig. 11. The rotating axes of the coherent fine

scale eddies are perpendicular to the eigenvector of the

minimum eigenvalue (ea), and the eddies experience the

strong compression in that direction. Most of the

coherent fine scale eddies experience weak stretching
corresponding to the intermediate eigenvalue with the

misalignment of about 15–17� with respect to the axial

direction of the fine scale eddies. In the direction per-

pendicular to the (ea; eb) plane, the coherent fine scale

eddies are significantly stretched by the maximum

eigenvalue. These features do not depend on Reynolds

number.
5. Spatial distributions of central axes of the coherent fine
scale eddies

To investigate spatial distribution of the coherent fine

scale eddies, the central axes of the fine scale eddies were

identified by using axis tracing method (Tanahashi et al.,

1999d). The axis tracing is conducted by following steps:

• From the point which was determined by the proce-
dure of the vortex identification scheme, the point is

moved in the axial direction by a short distance ds.
ds is parallel to the vorticity vector.

• Near the newly investigated point, a point that has

minimum variance of azimuthal velocity is searched

by the same procedure as described before.

• After the calculation of statistical properties, the

above steps are repeated until minimum variance
point cannot be found.

Fig. 12 shows spatial distributions of central axes of

the coherent fine scale eddies for Res ¼ 800. Spatial

distributions of the axes in Fig. 12 show that the

coherent fine scale eddies exist not only in the near-wall

region but also in the whole flow field. Moreover, it is

worth noting that central axes of the coherent fine scale
eddies are distributed in viscous sub-layer for all three

Res cases, and axis positions nearest to the wall are

about yþ ¼ 0:6, 0.8 and 0.9 for Res ¼ 180, 400 and 800,

respectively.



Fig. 13. Spatial distributions of central axes of the coherent fine scale

eddies with contour of the instantaneous streamwise velocity fluctua-

tion at yþ ¼ 20 for Res ¼ 800 (domain size: lþx � lþy � lþz ¼
2513� 800� 2513). Diameter of axis was drawn to be proportional toffiffiffiffiffiffi
Q�p

. (a) Top view, (b) perspective view from the upstream.

Fig. 12. Spatial distributions of central axes of the coherent fine scale

eddies for Res ¼ 800 (domain size: lþx � lþy � lþz ¼ 2513� 800� 2513):

(a) top view, (b) side view.

338 M. Tanahashi et al. / Int. J. Heat and Fluid Flow 25 (2004) 331–340
Fig. 13 shows spatial distributions of the axes of the

coherent fine scale eddies with contour of the instan-

taneous streamwise velocity at yþ ¼ 20 for Res ¼ 800.

In contour of the streamwise velocity, light-gray and
dark-gray indicate high- and low-speed regions,

respectively. Diameter of a central axis was drawn to be

proportional to
ffiffiffiffiffiffi
Q�p

on the axes and Q� is normalized

by g and uk. Therefore, wider axes possess stronger

rotation rate. It is observed that the large clusters of

central axes of the coherent fine scale eddies appear

with a spanwise spacing of about 1100–1200 wall units.

To inspect relation between the axes of the coherent
fine scale eddies and high- and low-speed regions in

more detail, the yþ dependence of distributions of axes

is shown in Fig. 14. In Fig. 14(a), it is clearly observed

that central axes in low-speed streaks possess the rela-

tively strong rotation rate near the wall. The distribu-

tions of the eddies with weaker rotation rate are not so

related to low-speed streaks. These tendencies are

hardly dependent on the wall-normal direction, but the
lateral spacing between low-speed regions becomes

wider leaving from the wall as shown in Fig. 14(b).

These results suggest that low-speed streaks possess

relatively larger second invariant of the velocity gradi-

ent tensor, which is closely related to fine scale eddies

possessing the stronger rotation rate.
To estimate relation between the streak structure and

the rotation rate of the coherent fine scale eddies

quantitatively, conditional pdfs of the instantaneous

streamwise velocity on the central axes of the coherent

fine scale eddies are plotted in Fig. 15. The triangle and

the rectangle symbols indicate pdfs conditioned by

Q� > 1:05 and Q� < 1:05, respectively. For comparison,

pdf of u0þ without the condition is plotted. Here, the
conditional value (Q� ¼ 1:05) is the average value of Q�

on central axes of the coherent fine scale eddies. The pdf

of u0þ for Q� > 1:05 indicates that the probability in the

low-speed regions is higher than that in the high-speed

regions. The percentages of axis in the low-speed regions

are 53.5% for all axes, 66.0% for Q� > 1:05 and 48.7%

for Q� < 1:05.
To investigate structures of the fine scale eddies in

details, spatial distributions of central axes in a typical

domain are magnified in Fig. 16. The visualized region

is xþ ¼ 0–2513, yþ ¼ 0–800 and zþ ¼ 785–1113, and the

visualization method is the same as in Fig. 13. It is

clearly observed that hairpin-like eddies and their

packets (Adrian et al., 2000; Christensen and Adrian,

2001) exist in labeled zones I, II and III. Moreover, the

two large clusters involving the packets of hairpin-like
vortices are extended like mountains in the streamwise



Fig. 14. The yþ dependence of the distribution of axis of the coherent fine scale eddies (Res ¼ 800, top view, domain size: lþx � lþz ¼ 2513� 2513). (a)

lþy ¼ 39–60, u0þ contour at yþ ¼ 40, (b) lþy ¼ 199–400, u0þ contour at yþ ¼ 200.

Fig. 16. Spatial distributions of central axes of the coherent fine scale

eddies for Res ¼ 800. Diameter of axis was drawn to be proportional

to
ffiffiffiffiffiffi
Q�p

(domain size: lþx � lþy � lþz ¼ 2513� 800� 328). (a) Perspec-

tive view from above and upstream, (b) side view.
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Fig. 15. The probability density function of the instantaneous

streamwise velocity on the central axes of the coherent fine scale eddies

(Res ¼ 800).
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direction (see II and III regions). The hairpin-like

vortices are one kinds of the coherent fine scale eddies,

and their clusters or packets make further large struc-
ture.
6. Conclusions

In the present study, DNSs of turbulent channel

flows were carried out up to Res ¼ 800 to investigate

the scaling law of fine scale eddies and their spatial
distribution. To bring out fine scale eddies without any

threshold, a new identification scheme based on local

flow pattern was employed. The detected coherent fine

scale eddies in turbulent channel flow can be scaled by

the Kolmogorov microscale and the Kolmogorov

velocity. In the near-wall region, the most expected

diameter and maximum azimuthal velocity are about 10

times of the Kolmogorov microscale and 2.0 times of
the Kolmogorov velocity, but become about 8 times of

the Kolmogorov microscale and 1.2 times of the Kol-

mogorov velocity leaving from the wall. These results

do not depend on Reynolds number. The inclination

angles and the tilting angles of the rotating axes of fine

scale eddies show strong directional dependence with

decrease of yþ. These features correspond to streamwise

vortices and hairpin-like vortices observed near the
wall. In the case of Res ¼ 800, the directional depen-

dence of the rotating axis is observed even for

yþ � 600.

Strain rate acting on the coherent fine scale eddies can

be scaled by the Kolmogorov microscale and the Kol-

mogorov velocity. The most expected eigenvalue ratio is

a:b:c ¼ �7:1:6 near the wall, but it becomes

a:b:c ¼ �5:1:4 to )4:1:3 leaving from the wall. It is
indicated that the large compression and stretching are

acting on the rotating plane of the coherent fine scale

eddies near the wall. The eigenvector of the minimum

eigenvalue has a tendency to be perpendicular to the axis

of the coherent fine scale eddy and the most expected
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angles between the axis and eigenvector of the inter-

mediate eigenvalue are about 15–17�.
Central axes of the coherent fine scale eddies are

distributed even in the viscous sub-layer. They form the
large clusters with a spanwise spacing of about 1100–

1200 wall units far from the wall (yþ � 400). Relation

between the instantaneous streamwise velocity and

central axes shows that the stronger coherent fine scale

eddies tend to exist in low-speed regions. Spatial distri-

butions of central axes also show that hairpin-like vor-

tex is a kind of the coherent fine scale eddies. In

addition, the packets of hairpin-like vortices can form
further large structure.
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